Ductility and Buckling Behaviour of Point?by?Point Wire Arc Additively Manufactured Steel Bars

نویسندگان

چکیده

The wire arc additive manufacturing (WAAM) technology in combination with computational design shows a big potential for realising novel force-flow optimised and material-efficient connections. This contribution deals point-by-point WAAM, material deposition strategy that allows to place precisely where structurally needed or aesthetically desired. could be applied, among others, type of steel nodes between custom-oriented profiles, as they occur freeform steel-glass grid-shells. In this paper, the structural behaviour robotically fabricated straight WAAM bars under uniaxial tensile compressive loading is discussed. focus set on ductility exhibited by such components well buckling observed loading. Experimental tests were conducted, both assess influence irregular geometry performance. Furthermore, it was studied what extent prediction ductile behaviour, load-bearing capacity post-buckling possible finite element simulations. presents discusses highlights obtained results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Additively manufactured hierarchical stainless steels with high strength and ductility.

Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensil...

متن کامل

Additively Manufactured Porous Biomaterials and Implants

Recent advances in additive manufacturing (AM) techniques (otherwise known as 3D printing) have enabled fabrication of a new class of porous biomaterials (Figure 1) with arbitrarily complex and precisely controlled topologies that e.g. resemble the geometry and micro-architecture of (trabecular) bone. Since the geometry of scaffolds and biomaterials is an important factor in bone tissue regener...

متن کامل

Mechanical Properties of Additively Manufactured Thick Honeycombs

Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding the mechanical behavior of more complex 3D tessellated structures such as porous biomaterials. In ...

متن کامل

Additively manufactured medical products – the FDA perspective

Additive manufacturing/3D printing of medical devices is becoming more commonplace, a 3D printed drug is now commercially available, and bioprinting is poised to transition from laboratory to market. Despite the variety of technologies enabling these products, the US Food and Drug Administration (FDA) is charged with protecting and promoting the public health by ensuring these products are safe...

متن کامل

Additively Manufactured Pneumatically Driven Skin Electrodes

Telemedicine focuses on improving the quality of health care, particularly in out-of-hospital settings. One of the most important applications is the continuous remote monitoring of vital parameters. Long-term monitoring of biopotentials requires skin-electrodes. State-of-the-art electrodes such as Ag/AgCl wet electrodes lead, especially during long-term application, to complications, e.g., ski...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ce/papers

سال: 2022

ISSN: ['2509-7075']

DOI: https://doi.org/10.1002/cepa.1750